MINISTRY OF EDUCATION, HERITAGE AND ARTS YEAR 13 CHEMISTRY REVISION WORKSHEET 10

Write the answers to the following questions in your exercise/activity books.

Strand 3: Reactions		Reactions	Sub-strand: Electrochemistry	
1.	State	State the definitions of the following terms.		
	(i)	Standard reduction potential (SRP/ E°)	(1 mark)	
	(ii)	Cell potential (E_{cell})	(1 mark)	
	(iii)	Standard cell potential (E°_{cell})	(1 mark)	

2. The SRP value can be used to determine the strength of an oxidising agent and a reducing agent.

Use the table below on SRP/E° values to answer the questions that follow.

Couple	SRP/E° Value (V)
Au ⁺ _(aq) /Au _(s)	+1.42
$Cu^{2+}(aq)/Cu(s)$	+0.34
$Co^{2+}(aq)/Co(s)$	-0.28
$Mg^{2+}{}_{(aq)}/Mg{}_{(s)}$	-2.37

(i) Identify the couple which is the strongest oxidising agent. (1 mark)

(2 marks)

(ii) Provide a reason for your answer to part (i) above.

3. Calculate the standard cell potential (E°_{cell}) for the following galvanic cell.

 $Zn_{(s)} / Zn^{2+}_{(aq)} / / Ag^{+}_{(aq)} / Ag_{(s)}$

(E°/SRP: $Ag^{+}_{(aq)} / Ag_{(s)} = +0.80 \text{ V}; \quad Zn^{2+}_{(aq)} / Zn_{(s)} = -0.76 \text{ V})$ (3 marks)

4. Use the reaction equation below to answer the questions that follow.

$$Cu_{(s)}$$
 + $Fe^{2+}_{(aq)}$ \longrightarrow $Cu^{2+}_{(aq)}$ + $Fe_{(s)}$

 $(E^{\circ}/SRP:\ Cu^{2+}_{(aq)} \ / \ Cu_{(s)} = +0.34 \ V; \ Fe^{2+}_{(aq)} \ / \ Fe_{(s)} = -0.44 \ V$

- (i) Show that the above reaction is **non-spontaneous**. (3 marks) [Hint: The E°_{cell} has to be calculated first to determine spontaneity.]
- (ii) Write the equation for the **spontaneous** reaction for the same cell mentioned above. (2 marks)

The End